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ABSTRACT

We consider the problem of a robot manipulator
operating in a noisy workspace. The robot is assigned the task
of moving from P; to Ps. Since Pj is its initial position, this
position can be known fairly accurately. However, since Pgis
usually obtained as a result of a sensing operation, possibly
vision sensing, we assume that Pgis noisy. We propose a
solution to achieve the motion which involves a new learning
automaton, called the Discretized Linear Reward-Penalty
(DLRp) automaton. The strategy we propose does not involve
the computation of any inverse kinematics. Alternatively, an
automaton is positioned at each joint of the robot, and by
processing repeated noisy observations of P the automata
operate in parallel to control the motion of the manipulator. The
advantages and the possible disadvantages of the scheme are

also discussed.

L. INTRODUCTION

Robotics is one of the most fascinating and interesting
areas of engineering and computer science. Not only is it an
area of great importance economically, but as a research area,
robotics encompasses such fields as kinematics, mechanics,
computational geometry, controls and language design.

One of the most interesting areas in robotics is the study
of the problem of navigating a robot (or a manipulator) within a
workspace. When the robot has no obstacles to avoid and is
operating in a noise-free workspace, the problem is essentially
a control problem. Solutions usually involve joint interpolated
motions, when the trajectory is not necessarily linear, and
motions computed using recursive algorithms (such as Taylor's
algorithm) if the path desired is linear. However, the problem
is far more complex if the robot (or manipulator) has to plan its
motion when there are obstacles in its workspace or if the
workspace is noisy.

At the next level of complexity the problems that are
considered are those involving motion planning amidst
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obstacles.Since the literature in this field is so extensive, we
refer the reader to a comprehensive survey of the papers and
results in the area by Whitesides [15]. The subsequent question
of much importance has been that of moving multiple objects.
This problem is currently being studied by a fair number of
researchers. Suffice it to say that the general problem of
coordinating the motion of multiple independent objects was
shown by Hopcroft, Schwartz and Sharir [8] to be
PSpace-Hard. From a practical view point Grossaman et al. [7]
of IBM considered the value of using multiple independent
robot arms. Clearly, this "value" depends on the criterion
function used to evaluate the performance of the multiple
robots. Based on the criteria that they investigated, Grossman
et al[7] concluded that in both one and two dimensions there is
"little merit" in having more than two arms. A brief survey of
the work done in all of the above areas is found in [23].
Although the body of work done in the area of robotics
and motion planning is so extensive, the work done is still in its
infancy when it concerns operating robots in real life
workspaces subject to noisy and inaccurate measurements.
Indeed, as Lozano-Perez remarked in an opening address of the
1985 SIAM Conference on Robotics and Geometric
Modeling[13]: "Nothing is ever where it is supposed to be - is
the first law of Robotics”. He went on to say that "one is lucky
to find one paper " on the topics of planning error and planning
sensing strategies. In another context, in a personal
communication to the first two authors, Lozano-Perez wrote
"Error is the central problem in robotics, but it often gets left
behind in the problem formulation”, and this indeed is true.

I.1 Problem Statement

In this paper we consider the problem of a multi-link
robot manipulator operating in a noisy workspace in which the
joints of the robot can be prismatic and revolute. The robot is
positioned at a configuration Pj, which fully describes the
position and orientation of its end-effector. The robot is
commanded to move to a configuration Pf, inside the



workspace. P represents the desired ultimate position and
orientation of the end-effector. Since P; is completely defined
by the joint angles of the manipulator, it is not unrealistic to
assume that it can be obtained to any desired degree of
accuracy. However, since the accuracy of Py, the goal
position, cannot be arbitrarily specified by the designer of the
manipulator, it is conceivable that the robot may be asked to
move to a noisy version of the configuration, Ps. This is
especially true if the latter configuration is obtained as a result
of a sensing process - customarily a vision sensing process.
The problem which we tackle in this paper is indeed that of
moving the robot from P; to P, where Py is a fixed but
unknown vector, which, furthermore, is unobservable. On the
other hand, what is observable is a sequence {Qg(n)}, where,
Qf(m) = Pr+ 1
and M isan iid. random vector. We intend that the controller
operates by processing P; and {Qf (n)}. This problem of
adaptively controlling a robot has been studied earlier (and that,
especially in non-noisy environments). A review of the existing
solutions reported in the literature [1-3,9,10,12,14] is given in
[23] but omitted here for the sake of brevity.

We shall suggest a solution to the problem and
consciously try to disengage ourselves from the traditional
concepts of closed-loop feedback control theory. By this, we
do not imply that the latter schemes are inferior. However, we
aim to arrive at a solution which involves absolutely no
estimation of parameters, absolutely no inverse kinematic
computations, and no feedback control which is "hardware”
oriented (i.e., which requires the tuning of servo-controllers
etc.) More importantly, apart from the scheme being
computationally attractive, the solution is highly parallelizable.

The strategy which we propose to employ involves using
learning automata. Learning automata have been extensively

studied in the literature and have been used to model biolog'ical
mechanisms. They have also been used in pattern recognition,

optimization, game playing and more recently even in object
partitioning. These automata interact with an environment, and
based on the responses of a noisy environment they attempt to
learn the optimal action offered by the environment. We
propose to use a learning automaton at every joint of the robot
manipulator. This indeed involves merely maintaining a Finite
State Machine at each joint, which dictates the motion that the
particular joint has to make. Without using any other feedback
arrangement except repeated noisy observations of Pg, we
propose to control the motion of the manipulator. Further, the
control of the individual joints is achieved by having the
automata operate in parallel. Finally, the feedback
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computations involved are of an elementary sort -- they
involve updating the states of the Finite State Machine.

II. LEARNING AUTOMATA

Learning automata have been extensively studied by
rescarchers in the area of adaptive learning. The intention is to
design a learning machine which interacts with an environment
and which dynamically learns the optimal action which the
environment offers. The literature on learning automata is
extensive. We refer the reader to a review paper by Narenda
and Thathachar [18] and an excellent book by Lakshmivarahan
[16] for a review of the various families of learning automata.
The latter reference also discusses in fair detail some of the
applications of learning automata.

By far, most of the research in this area has involved the
category of machines called Variable Structure Stochastic
Automata (VSSA). Automata in this category possess
transition and output functions which evolve as the learning
process proceeds. A VSSA is completely defined by a set of
action probability updating functions [16,18,22].

VS8A are implemented using a Random Number
Generator ( RNG ). The automaton decides on the action to be
chosen based on an action probability distribution, Nearly all
the VSSA discussed in the literature permit probabilities which
can take any value in the range [0,1]. To minimize the
requirements on the RNG and to increase the speed of
convergence of the VSSA the concept of discretizing the
probability space was recently introduced in the literature
[19,20]. As in the continuous case, a discrete VSSA is defined
using a probability updating function. However, as opposed to
the functions used to define continuous VSSA, discrete VSSA
utilize functions that can only assume a finite number of
values. These values divide the interval [0,1] into a finite
number of subintervals. If the subintervals are all of equal
length the VSSA is said to be linear. Using these functions
discrete VSSA can be designed - the learning being performed
by updating the action probabilities in discrete steps.

In this paper we shall present a new discretized
automaton which is the Multi-Action Discretized Linear
Reward-Penalty (DLRp) automaton. We shall prove that the
Two-Action machine is ergodic and e-optimal in all random
environments whenever cin< 0.5. Indeed this is the only
known symmetric linear reward-penalty automaton which is
€-optimal in any random environment. We also show that the
general Multi-Action Discretized Linear Reward-Penalty
automaton is expedient. We shall then proceed to propose their
application to the particular robotics problem.




IL.1 Fundamentals and Learning Criteria

The automaton considered in this paper selects an action
a(n) at each instant 'n' from a finite actionset { aj |i= L toR }.
The selection is done on the basis of a probability distribution
p(n), an R x 1 vector where, p (n) = [p1(n), pa(n),... ,pR(n)]T
with, pj (n) = Pr[a(n) =aj], and,

R
Y pm=t
=1

The selected action

forall n. 1)

serves as the input to the
environment which gives out a response b(n) at time 'n’ . b(n)
is an element of B = {0,1}. The response '1" is said to be a
‘penalty’. The environment penalizes the automaton with the
penalty cj, where, for all i,
¢i = Pr[bm)=1|a(n) =a;]. 2)
Thus the environment characteristics are specified by the

set of penalty probabilities {c;} (i=1to R ). On the basis of
the response b(n) the action probability vector p (n) is updated

and a new action chosen at (n+1). We define the reward
probabilities as 1-c; for 1<i<R. The penalty probabilities
{ci} are unknown initially and it is desired that as a result of
interaction with the environment the automaton arrives at the
action which has the minimum expected penalty response. If L
is this action, then py, (n) = 1, pi ) =0 fori # L achieves
this result. We seek for updating schemes for p(n) with this
optimal solution in view.

With no a priori information, the automaton chooses the
actions with equal probability. The expected penalty is thus
initially Mg , the mean of the penalty probabilities. An
automaton is said to learn expediently if the asymptotic
expected penalty, E[M(n)], is less than My. The automaton is
said to be optimal if E[M(n)] asymptotically equals the
minimum penalty probability. It is e-optimal if in the limit,
EM(@)] <c[, + € , for any arbitrary € > 0 by suitable choice of
some parameter of the automaton. Thus the limiting value of
E[M(n)] can be as close to c]_ as desired.

III. THE DISCRETIZED LINEAR

REWARD-PENALTY (DLRp) AUTOMATON
III.1 The Two-Action DLRp Automaton

The Discretized Linear Reward-Penalty ( DLRp)
automaton has (N + 1) states where N is an even integer. We
refer to the set of states as S = { S0, $1»--» SN }. Associated
with the state sj is the probability i/N, and this represents the
probability of the automaton choosing action aj. Note that in
this state the automaton chooses action ay with probability
(1-i/N). Since any one of the action probabilities completely

defines the vector of action probabilities, we shall, with no loss
of generality, consider p1( n).

The basic idea in the learning process is to make
discrete changes in the action probabilities. By defining the
transition map as a function from S X B to S the changes in the
action probabilities are indeed discrete. The transition map of
the DLRp automaton is specified by (3) below (and given

schematically in [23]) for s(n) = s, 1 <k <N-1.
s(n+l) = sky1 ifa(n)=ajandb(n)=0,

ora(n)=a and b(n) =1
ifan)=a; andb(n)=1,
or a(n) = a3 and b(n) = 0. 3)

= k-1

Observe that (3) is valid only for the interior states. Otherwise,

s(n+1) = s(n) if s(n) = sg or sN and b(n) = 0

= §1 if s(n) = spand b(n) = 1
= SN-1 if s(n) = s\y and b(n) = 1.

In lieu of the above, if ¢] < ¢7, the automaton has no
absorbing barriers except in the degenerate cases when c| = 0
or ¢p = 1. This implies that the underlying Markov chain is
ergodic and that the limiting distribution of being in any state is
independent of the corresponding initial distribution. The
homogeneous Markov chain is defined by a stochastic matrix M
whose arbitrary element M, j is defined as :

MiJ =Pr[ s(n) = S [s(n-1)=s;]1, where,

M1 = gic1 + gi(1l-¢cp) for1<i<N,

Mjii1=gic2+ gi (1-cp)for 0<i<N-1,

Mjj = Ofor 1<i<N-1 )

where gi =i/N and g'j = 1-i/N. All the other elements of
M are zero. Furthermore, the boundary conditions for the
Markov chain are specified by :

Mpo=(1-¢c2) and MNN = (l-c1). (5)

The Markov chain consists of exactly one closed
communicating class. Since it is aperiodic the chain is ergodic
and the limiting distribution is independent of the initial
distribution [2]. Let TU(n) be the state probability vector,
where, for all n, Tl(n) = [ np(n), A1(n),. .., nN(n)]T, and,
mi(n) = Pr [ s(n) = s; ], with,

Then the limiting value of TU is given by the vector which
satisfies (6) below and thus the following theorems follow.
MITT = T (6)
Theorem 1.
Let A=(cy+cp-1). Then mj, theith component of



the asymptotic probability vector obeys the following difference
equation for 1 <i<N.

C,- A(%
. =———

.= 0 ”i-l i=1,2,-..,N.
(1.c2)+Ai

Proof : The proof is quite involved and given in [23]. An
alternate proof is given in [20]. ooo
Theorem II.

The DLRp automaton is €-optimal whenever the
minimum penalty probability is less than 0.5.
Proof : The proof is very involved and given in [23].  eee

The use of the two-action DLRp automaton to achieve
the manipulator control will be discussed later. Indeed, this
automaton commands the joint that it controls to either go
forward or go backward in a discretized joint space. A
generalization of this motion requires the joint controller to go
forward, go backward or stay at its current location. In order
to understand the latter motion, we need to we study the design
and the properties of the Multi-Action DLRp automaton.
Subsequently, we consider the use of these automata in
trajectory planning.

III.2 The Multi-Action DLRp Automaton
The R-Action DL grp automaton operate in a discretized
probability space which divides the probability space [0,1] into
NR intervals when N 2 1 and does not divide the probability
space at all if N= 0. The action-probability vector p(n) is
defined by a set of probabilities, [p1(n),pa(n), . .. ,pR(n)]T,
where pj(n) is the probability with which the automaton
chooses action a; satisfying (1). Note that apart from (1), we
constrain each pj(n) such that it has to be a value on the
discretized space. If, for the ease of notation,we omit the
reference to the time instant n, the latter statement means that if
8=1/NR, then, apart from (1), p; satisfies : pje {i | 0<i<SNR}.
The definition of the DLRp automaton in the case of a
reward (b(n) = 0) is as follows for j= i:
pi(n+1) = max (pj(n) - 8 ,0) if a(n)=aj, b(n)=0
=1- X} max @j@®-80)  if a(n)=aj, bn)=0
The philosophy behind the above equation is quite
straightforward. If aj is chosen and the automaton is rewarded,
then, each of the other pj's is decremented by & if it is positive.
These decrements are then added to p;(n).
To describe the case of a penalty response, we define a
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function RandVect, whose input is an integer k < R-1, and j the
index of an action. The output is a random subset Hy(j) of k
indices from the set {1,2,. .. ,R} - {j}. Using this notation,

we define the updating rule as below:
pi(n+1) =max(pj(n)- R-1)3,0) if a(n)=aj, b(n)=1
=pi(n) + & if a(n)=aj, b(n)=1,
pj(n)=k5, &k2R-1)
=pjn) + & if a(n)=aj, b)=1, pj(n)=kd

k <R-1 and ie Hg(j)

The philosophy behind the above equation is as follows.
If a(n)=a; and the automaton is penalized, pj(n) is decremented
by (R-1)3 if pj(n) = (R-1) 3, and this decrement is added to
other actions, each action probability being incremented by 3.
However, if the action probability of the action chosen has only
a value of k3, where k<R-1, this probability is decremented to
zero, and k out of the (R-1) remaining action probabilities are
randomly chosen and these are incremented by 8. The R-state
DLRp automaton has the following properties.
Theorem III

The R-state DLRp automaton is expedient.
Proof : The result is proved in [23]. (X

Throughout the rest of the paper we will merely be
considering the case when R= 3, primarily because the actions
that we require that a joint controller take are those of going
forwards one step in the discretized joint space, going
backward one step and staying at the same joint angle. The
transition map and the transition matrix of the case when R = 3
is explained in detail in [23] for N=1.We conjecture that the
R-action DLRp is €-optimal whenever cypin < 0.5. The proof
of the above conjecture will be quite involved. Indeed, it will
require the solution of a stochastic tensor equation. However,
simulation results seem to indicate that the conjecture is true.

IV. MANIPULATOR CONTROL USING THE
DLRp AUTOMATON

The strategy by which we control the manipulator can
now be proposed, since the theoretical framework has been
laid. Let us suppose we have a manipulator with K joints.
These joints may be revolute or prismatic. The joint angles can
be measured to yield the current position of the end-effector P;,
and this is assumed to be done quite accurately. The robot is
continuously fed with a noisy version of the Cartesian
coordinates of the desired goal position of the end-effector
Qf(n). Unfortunately, Qg(n) is noisy - and it represents the




observable form of the actual goal position Py, the latter itself
being unknown. Our intention is to adaptively control the
manipulator so that it reaches arbitrarily close to Py.

The most straightforward method to achieve this
"non-adaptively” is to take a large number of observations
Qf(n) of Pr and by computing the estimate of P from {Q¢(n)},
any straightforward path planning strategy (for example, one
using coordinated joint interpolated moves) can be utilized to
move the end-effector from Pj to this estimate of Ps. We do
not recommend this strategy for two reasons. First of all, this
scheme is non-adaptive. Secondly, in a real environment, the
process of obtaining a large number of observations of Pg can
be very time consuming for it could involve processing as
many digital images of the workspace. Indeed, the robot will
have to wait while all of these images are processed - before it
even starts its motion. Also, once it does start its physical
motion, the time involved is again a large portion of the time
that the user has to spend, because, as is well known, the
mechanical motions are often the most time consuming. The
ideal scenario would be if the motion was planned piecewise,
and as the planned motion is executed mechanically, the
computer plans the next segment of the motion. Indeed, this
can be achieved, for example, in VAL II by using motion

commands which are suffixed by the symbol "!".
The strategy which we propose overcomes both the

above drawbacks. Let us assume that the Two-Action DLRp
automaton is the learning machine that is used. Every joint of
the robot is equipped with such a machine, and each joint
independently chooses to either go forward or go backward in
the discretized joint space. The way by which this motion of
going forward or backward one step is implemented is, of
course, robot dependent - and is easily achieved if the motors
are stepped motors.

The learning process of the manipulator is described as
follows. Let y(n) be a criterion function, for example the
Euclidian distance between Qf(n) and P; (n). Based on the
actions stochastically chosen by the individual automata, the
position of the end-effector of the robot moves to Pj(n+1). The
observation Qg(n+1) is now obtained, and the criterion function
computed. If the latter function is less than it was in y(n), each
automaton is rewarded. Otherwise, the automata are penalized.
Based on these responses the action probabilities are locally
updated and the process repeated. When the criterion function
is small enough the process is terminated, and a fine motion
planning strategy is invoked.

In the case when the Three-Action DLRp automaton is
the learning machine, each joint is equipped with such a
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machine, and each joint is commanded stochastically to go
forward, stay where it is, or go backward at every time instant
based on the action chosen by the automaton. Based on this
decision, the position P;j(n+1) of the end-effector is known,
and using the new observation Qg(n+1) the criterion function is
recomputed to analogously reward or penalize all the automata.
Apart from our technique overcoming the drawbacks
discussed above, it has one major advantage. The strategy
does not require the computation of any inverse kinematics -
Indeed,
inverse kinematic and inverse dynamic solutions can often have

and is thus computationally extremely effective.

scores of parameters which are position, velocity and
acceleration dependent. By permitting the automata to perform
stochastically, and by repeatedly computing the straightforward
criterion function, we have been able to avoid such tedious

computations. Besides this, note that the automata make their
decisions and update their probability vectors independently,

and hence they can be made to operate in parallel - thus
reducing the actual physical time that elapses.Furthermore, it
must be noted that unlike most VSSA, maintaining the DLRp
automata involves just incrementing (or decrementing) one
integer memory location per action, and furthermore the
process of choosing an action involves invoking a random
number generator exactly once per joint.

In both the scenarios which we cited above, all the
automata were either simultaneously penalized or
simultaneously rewarded. If each automaton should get a
distinct response, one has to consider how each automaton is
performing, as opposed to seeing how the collective
performance of the automata is. Thus, in this case, a criterion
function yj(n) can be computed for the ith joint, and the
performance of this joint (in joint space) must be evaluated.
But this requires - at the very least - a linearized model of the
inverse kinematics and can be more expensive than the
scenarios discussed above.

The technique that has been suggested in this paper has
been rigorously tested for a few simple two-dimensional
robots. The first robot R1, is the familiar Horn's Robot [4] in
which the robot operates in the plane, and the two joints are
revolute joints. The second robot is the 3-link generalization of
Horn's Robot in which the position and the orientation of the
end-effector can be controlled.

Various experiments were conducted in which P; was
specified and noisy versions of Ps were generated using noise
that had a Gaussian (Normal ) distribution. Automata with two
actions and three actions were independently used to control the
manipulator. In each case a hundred experiments were



performed and the expected ensemble path of the robot
end-effector was traced. Also the expected decrease in the
Euclidian distance from Pj(n) to final ideal goal position was
also obtained. The graphs for a typical scenario are shown in
Figures I(a) and (b) respectively for the case when NR=6 and
R = 2. The decrease in the Euclidian distance from Pr asa
function of n is shown in Figure I(b). The number of iterations
required to converge to a point within the three standard
deviation circle of the goal position in this case is approximately
60. A complete survey of some of the experimental results
obtained using Two-Action and Three-Action automata and for
the cases when the automata receive different responses is
given in [23]. Similar results are also available for the three-link
generalization of Horn's Robot [23].

V. CONCLUSIONS AND OPEN PROBLEMS

In this paper we have considered the problem of
controlling a manipulator arm in which Pj the initial position of
the end-effector is known, and the goal position is noisily
sensed. The robot is required to move from P; to Py, but
instead of having Py specified, a series of noisy observations,
{Qf(n)}, of Py are available.

The solution which we propose involves using learning
automata. A new learning automaton, the Two-Action DLRp
automaton has been introduced and proven to be €-optimal
wherever the minimum penalty probability is less than 0.5. The
general R-action DLRp automaton has been shown to be
expedient, but conjectured to be e-optimal in a similar
environment. A DLRp automaton is stationed at each joint of
the robot, and these operate in parallel to control the individual
joints of the robot.

Experimental results that demonstrate the power of the
scheme for two simple two-dimensional robots have been
presented. We intend to actually study the power of the scheme
for a real life robot which has very primitive sensing
operations.Also, preliminary simulation results using various
learning automata seem to suggest that this strategy could
lead to fascinating linear motion (or dog-chase) strategies
which do not involve extensive inverse kinematic solutions.
This avenue remains open. There are also a number of open
stability problems such as the convergence of the robot at
singularities and the stability analysis of robots which are
stochastically receiving incremental motion commands.
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Expected  distance

10 ¢

Figure Ia:

Expected Path (given as a sequence of points) of the two-link
Horn's Robot with links of length unity. The control is
achieved using the DLyp, automata with NR = 6 and with a
single response controlling both the automata. In this case the
standard deviation is 0.1 times the link length. The disk
shows the three standard deviation range of noisy points.
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Figure Ib:

Expected change in distance from the initial configuration to
the final mean configuration for the set-up described in Figure
Ia.



